Infinitely Generated Gorenstein Tilting Modules
نویسندگان
چکیده
The theory of finitely generated relative (co)tilting modules has been established in the 1980s by Auslander and Solberg, infinitely tilting have recently studied many authors context Gorenstein homological algebra. In this work, we build on developing “Gorenstein approximations” employing these approximations to study classes their associated cotorsion pairs. As applications our results, discuss problem existence complements partial as well some connections between finitistic dimension conjectures.
منابع مشابه
Equivalences Induced by Infinitely Generated Tilting Modules
We generalize Brenner and Butler’s Theorem as well as Happel’s Theorem on the equivalences induced by a finitely generated tilting module over Artin algebras, to the case of an infinitely generated tilting module over an arbitrary associative ring establishing the equivalences induced between subcategories of module categories and also at the level of derived categories.
متن کاملWakamatsu Tilting Modules , U - Dominant Dimension and k - Gorenstein Modules ∗ †
Let Λ and Γ be left and right noetherian rings and ΛU a Wakamatsu tilting module with Γ = End(ΛT ). We introduce a new definition of U -dominant dimensions and show that the U -dominant dimensions of ΛU and UΓ are identical. We characterize k-Gorenstein modules in terms of homological dimensions and the property of double homological functors preserving monomorphisms. We also study a generaliza...
متن کامل9 S ep 2 00 4 Wakamatsu Tilting Modules , U - Dominant Dimension and k - Gorenstein Modules ∗ †
Let Λ and Γ be left and right noetherian rings and ΛU a Wakamatsu tilting module with Γ = End(ΛT ). We introduce a new definition of U -dominant dimensions and show that the U -dominant dimensions of ΛU and UΓ are identical. We characterize k-Gorenstein modules in terms of homological dimensions and the property of double homological functors preserving monomorphisms. We also study a generaliza...
متن کاملStrongly ω-Gorenstein Modules
We introduce the notion of strongly ω -Gorenstein modules, where ω is a faithfully balanced self-orthogonal module. This gives a common generalization of both Gorenstein projective (injective) modules and ω-Gorenstein modules. We investigate some characterizations of strongly ω -Gorenstein modules. Consequently, some properties under change of rings are obtained. Keywords—faithfully balanced se...
متن کاملGorenstein Dimension of Modules
R ring (always commutative and Noetherian) (R,m,k) local ring with maximal ideal m and k = R/m L,M,N, . . . R-modules (always finitely generated) M HomR(M,R), the dual of M D(M) the Auslander dual of M (Definition 2) σM : M wM∗∗ the natural evaluation map; KM = Ker(σM ), CM = Coker(σM ) G-dimR(M),G-dim(M) Gorenstein dimension of M (Definition 16) G-dim(M) <loc ∞ M has locally finite Gorenstein ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebras and Representation Theory
سال: 2021
ISSN: ['1386-923X', '1572-9079']
DOI: https://doi.org/10.1007/s10468-021-10072-8